Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Coll Emerg Physicians Open ; 4(3): e12965, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37220476
2.
Lab Invest ; 101(6): 733-744, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33903732

RESUMO

Progesterone (P4) and estradiol (E2) have been shown to stimulate and regulate breast cancer proliferation via classical nuclear receptor signaling through progesterone receptor (PR) and estrogen receptor α (ERα), respectively. However, the basis of communication between PR/ERα and membrane receptors remains largely unknown. Here, we aim to identify classical and nonclassical endocrine signaling mechanisms that can alter cell proliferation through a possible crosstalk between PR, ERα, and progesterone receptor membrane component 1 (PGRMC1), a membrane receptor frequently observed in breast cancer cells. While P4 and E2 treatment increased cell proliferation of ER+/PR+/PGRMC1 overexpressing breast cancer cells, silencing ERα and PR or treatment with selective estrogen receptor modulator (SERM) tamoxifen, or (PR-antagonist) RU-486 decreased cell proliferation. All four treatments rapidly altered PGRMC1 mRNA levels and protein expression. Furthermore, P4 and E2 treatments rapidly activated EGFR a known interacting partner of PGRMC1 and its downstream signaling. Interestingly, downregulation of ERα by tamoxifen and ERα silencing decreased the expression levels of PGRMC1 with no repercussions to PR expression. Strikingly PGRMC1 silencing decreased ERα expression irrespective of PR. METABRIC and TCGA datasets further demonstrated that PGRMC1 expression was comparable to that of ERα in Luminal A and B breast cancers. Targeting of PR, ERα, and PGRMC1 confirmed that a crosstalk between classical and nonclassical signaling mechanisms exists in ER+ breast cancer cells that could enhance the growth of ER+/PR+/PGRMC1 overexpressing tumors.


Assuntos
Neoplasias da Mama/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos
3.
Sci Rep ; 10(1): 20225, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214606

RESUMO

Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Bases de Dados Factuais , Progressão da Doença , Humanos , Neoplasias Pancreáticas/patologia
4.
Oncogenesis ; 7(7): 52, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976975

RESUMO

IGF-1R signaling controls various vital cellular functions and this signaling is deregulated in many cancers, including pancreatic cancer. Several efforts have mainly focused on inhibiting the IGF-1R signaling cascade. The outcomes of these focused preclinical studies have been positive, whereas clinical trials of IGF-1R inhibitors in pancreatic cancer have failed, raising the questions about this therapeutic approach. This necessitates a better understanding of the role of IGF-1R signaling in pancreatic cancer. We investigated the impact of IGF-1R signaling on crucial transcription factors and identified the FOXC1 as one of the crucial regulator of IGF-1R signaling. We employed genetic approaches to overexpress and silence FOXC1 in pancreatic cancer cells. Our results demonstrate that IGF-1R and FOXC1 seem to positively regulate each other. Further, FOXC1 increased the metastatic abilities of pancreatic cancer cells by enhancing cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, and angiogenesis. The data from xenograft experiments further established the importance of FOXC1 in pancreatic tumorigenesis. In conclusion, FOXC1 is a potent oncogenic transcription factor, which promotes pancreatic cancer growth and metastasis. Thus, targeting FOXC1 could be a potential therapeutic strategy against pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...